実験日時:2004年3月18日 12:30~17:30
実験場所:岡山市祇園町 旭川荘建設現場
実験者 :藤谷,藤原,荘所(以上,広島大学),佐藤 (佐藤型鋼製作所)

軽量角型鋼管の振動実験の概要を図 1 に示す。壁の仕様は床および梁にランナーを設置し,角 型鋼管(縦材)を17本設置している。また,角型鋼管に振れ止め(横材)を2本設置し,片面の み石膏ボードを貼り付けている。加力は梁から吊るしたソフトボールを石膏ボードから770mm 離 した位置から振り子運動させて行った。振動測定は面外方向と面内方向(2方向)の3方向測定し た。

振動実験の測定項目を以下に示す。角型鋼管を3種類用意して、それぞれの種類で振れ止め有り、 振れ止め1本(下側の振れ止めのみ残す)、振れ止め無しの3種類の合計9種類の実験を行った。

振動測定は面外方向と面内方向(2方向)の3方向測定したが、ここでは面外方向のみの結果を 示す。 軽量角型鋼管の振動実験結果(変位波形とスペクトル図)を以下に示す。

• No.2 振れ止め1本

• No.3 振れ止め無し

図 4 No.3 (振れ止め無し)の変位波形とスペクトル図

No.1~No.3 のスペクトル図の比較を以下の図 5 に示す。

図 5 No.1~No.3 のスペクトル図の比較

· No.4 振れ止め有り

図 6 No.4 (振れ止め有り)の変位波形とスペクトル図

図 7 No.5 (振れ止め1本)の変位波形とスペクトル図

• No.6 振れ止め無し

図 8 No.6 (振れ止め無し)の変位波形とスペクトル図

No.4~No.6のスペクトル図の比較を以下に示す。

図 9 No.4~No.6のスペクトル図の比較

No.7 振れ止め有り

図 10 No.7 (振れ止め有り)の変位波形とスペクトル図

• No.9 振れ止め無し

No.7~No.9のスペクトル図の比較を以下に示す。

図 13 No.7~No.9 のスペクトル図の比較

以下の表1に各実験結果の1次から4次の振動数を示す。

	1 次振動数	2 次振動数	3 次振動数	4 次振動数
No.1	523	594	<mark>690</mark>	
No.2	521	582	667	754
No.3	518	587	627	701
No.4	450	505	599	707
No.5	449	505	585	676
No.6	441	502	587	620
No.7	460	506	587	704
No.8	452	505	584	656
No.9	444	500	560	576

表 1 各実験結果の1次から4次の振動数(単位:Hz)

実験写真を以下に示す。

試験体は、新角型構造用形鋼を下地材とし、片面のみにせっこうボードをタッピンねじ止めたもので、この壁面をソフトボールで打撃を与えたときの壁の振動波形を微動計で測定し、固有振動数を求めている。

表1に、実験より得られた各試験体の固有振動数を示す。たとえば、□65x45x0.8 の場合、No.1 試験体(振れ止め2本)、No.2 試験体(振れ止め2本)、No.3 試験体

(振れ止め無し)の各試験体の1次固有振動数はそれぞれ、523Hz、521Hz、518
Hzで差異は見られない。また、2次固有振動数も、それぞれ、594Hz、582Hz、587Hzで差異は見られないが、3次固有振動数は、それぞれ、690Hz、667Hz、627Hzで若干の差異が認められる。同様に、□65x45x0.45の場合、No.4 試験体

(振れ止め2本)、No.5 試験体(振れ止め2本)、No.6 試験体の1次および2次の 固有振動数に差異は見られないが、3次および4次の固有振動数に差異が見られる。 この現象は、溝形断面 65x45x0.8 の場合にも見られる。

すなわち、1次および2次固有振動数は、振れ止め2本、振れ止め1本、振れ止 め無しのどのケースも差は見られなかったが、3次および4次固有振動数は、振れ 止め2本、振れ止め1本、振れ止め無しのケースの順に小さくなっている。このこと は、振れ止めがあるケースは、これらの高次振動波形に対して、下地材壁システムが 剛になっていることを示している。すなわち、3つまたは4つの波形が発生するよう な高次の振動波形に対応する振動応答においては、振れ止めが壁を剛くするような効 果をもっていると考えることができる。

考察